我组以博士研究生王增茂同学、李雪同学以及本科生马思晗同学为第一作者的三篇论文被人工智能领域顶级会议 IJCAI 2018 录用。
国际人工智能联合大会IJCAI (International Joint Conference on Artificial Intelligence)始于1969年,每两年一次(2016年起一年一次),涵盖了自然语言处理、机器学习、人工智能理论与架构、机器人科学等领域。会议具有很高的学术水平和影响力,受到学术界和产业界的高度关注,因此IJCAI和ICCV、CVPR、ICML、AAAI等会议被中国计算机学会(CCF)认定为A类会议。
2016级博士研究生王增茂同学的“Matrix Completion with Preference Ranking for Top-N Recommendation”,结合推荐评分矩阵的全局低秩特性和用户对商品等条目偏好的局部特征,构造了一种保持局部和全局特征的联合学习矩阵补全模型,并引入线性模型,提出了一种简单的分解优化方法,可以对联合模型进行快速优化求解。
2017级博士研究生李雪同学的“R-SVM+: Robust Learning with Privileged Information”,在使用特权信息的SVM+框架下,考虑数据潜在噪声对模型预测结果的影响,通过严谨的理论分析,推导出由噪声带来的数据扰动的下界,通过最大化扰动的下界来提高模型对噪声的鲁棒性。R-SVM+的目标函数可以转化为一个二次规划问题,可以用现有的工具包高效求解。
本科生马思晗同学“Self-Representative Manifold Concept Factorization with Adaptive Neighbors for Clustering”,提出了一种新的基于流形约束的概念分解聚类算法。首先,在目标函数中加入了基于自表达和自适应近邻结构的流形约束,能够有效地减少聚类结果对原始数据和相似度矩阵模型的依赖。同时,自表达模型能够挖掘数据的全局结构信息,有助于得到更好的聚类效果。最后使用迭代优化可以直接得到聚类结果。实验证明该算法能够有效提升聚类效果。